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The instabilities of two-dimensional convection rolls in a horizontal fluid layer heated 
from below are investigated in the case when the Prandtl number is seven or lower. 
Two new mechanisms of instability are described theoretically as well as experi- 
mentally. The knot instability causes the transition to spoke-pattern convection a t  
higher Rayleigh numbers while the skewed varicose instability accomplishes a change 
to larger horizontal wavelengths of the convection rolls. Both instabilities disappear 
in the limits of small and large Prandtl number. Although the experimental methods 
fail in realizing closely the infinitely conducting boundaries assumed in the theory, 
the observations agree in all qualitative aspects with the theoretical predictions. 

1. Introduction 
Convection in a layer heated from below has attracted increasing attention in 

recent years as the simplest hydrodynamical system in which the transition to tur- 
bulence can be studied. Because of the horizontal isotropy of the heated layer, a 
characteristic element of turbulence is seen a t  the onset of convection. In general, 
the pattern of convection cells realized exhibits a random orientation on a large scale 
if the influence of the side walls is sufficiently small and if the initial conditions are 
not controlled. On a small scale of a few layer depths, convection assumes the form 
of nearly two-dimensional rolls when the variation of the material properties between 
top and bottom boundaries is negligible except for the linear dependence of the 
density of temperature. With increasing Rayleigh number this form of convection 
changes into various forms of truly three-dimensional forms of convection depending 
on the Prandtl number of the fluid. I n  experiments started without controlled initial 
conditions, these transitions are not clearly exhibited since they tend to occur first 
in particularly inhomogeneous parts of the convection pattern. For this reason a 
number of experiments have been carried out with controlled initial conditions (Chen 
& Whitehead 1968; Russe & R'hitehead 1971, 1974; IT'hitehead & Chan 1976); 
these experiments emphasized high Prandtl number fluids. I n  the second part of this 
paper the results of experiments with fluids of Prandtl number 7 or less will be re- 
ported; these results are distinctly different from those for higher Prandtl numbers. 

Since patterns of uniform convection rolls can be generated in experiments with 
controlled initial conditions, observations of instabilities can readily be compared 
with theoretical predictions. Convection is one of the few cases where transitions 
from two-dimensional to  three-dimensional forms of motion are currently accessible 
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to  numerical analysis. The first transition that has been investigated theoretically is 
the transition to bimodal convection (Busse 1967), which occurs predominantly a t  
high Prandtl numbers. This transition is caused by the instability of the thermal 
boundary layers in much the same way as the onset of convection corresponds to the 
instability of the static layer. An entirely different instability occurs a t  low Prandtl 
numbers in the form of waves propagating along the convection rolls (Busse 1972). 
This oscillatory instability is the main cause of the transition to time-dependent 
convection. A computational program for the investigation of instabilities of con- 
vection rolls a t  arbitrary Prandtl numbers was developed by Clever & Busse (1974); 
they described results for the instabilities leading to bimodal and oscillatory convec- 
tion for a number of representative Prandtl numbers. A restricted coverage of the 
parameter range of potentially unstable disturbances caused two new forms of in- 
stability to be overlooked. Both the knot instability and the skewed varicose in- 
stability are predominant a t  Prandtl numbers of order unity. The first part of this 
paper describes the computational results obtained for these instabilities. The com- 
parison with the experimental observations in the second part of the paper demon- 
strates agreement between experiment and theory in all basic aspects of the problem. 

Since the mathematical analysis of convection rolls and their instabilities has been 
described in the earlier paper (Clever & Busse 1974, hereafter referred to as I), oiily 
a brief outline of the methods of analysis is given in $ 2 .  The notation of I will be used 
throughout this paper. The numerical results are discussed in $3.  The description of 
the experimental technique in $ 4  is kept relatively short by referring the reader to 
earlier papers on this subject; $ 5 presents the observations. The boundary conditions 
of the theory cannot be as closely approached as in the case of high Prandtl number 
fluids owing to experimental limitations, but the discrepancy between experimental 
and theoretical conditions has only a quantitative influence. The paper concludes 
with some more general remarks in § 6. 

2. Mathematical formulation of the problem 

2.1. Basic equations 

The theoretical description of convection in a horizontal fluid layer heated from 
below is based on the Navier-Stokes equations and the heat equation. Using the 
Oberbeck-Boussinesy approximation, the equations can be written in the non- 
dimensional form given by expressions ( 1 ) ,  (2) and (3) of I. Length, time and tern- 
pernture are measured in terms of the thickness h. of the layer, the thermal time scale 
~ Z / K  and ATIR, respectively, where K is the thermal cliffusivity, AT is the temperature 
difference between the boundaries and TZ is the Rayleigh number. For the numerical 
analysis i t  is convenient to replace the velocity vector v by two scalar potentials # 
and $ according to the general representation for the solenoidal vector field v: 

v = s(b+all., 

where the operators S and E are defined by 

sq5 = V x ( V x A g l ) ,  E = V x A $  

and where X is the unit vector normal to the layer. By taking the vertical component; 
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of the curl and the curl (curl) of the equation of motion, the equations for 9 and $ 
are given by ( 5 )  and ( 6 )  of I .  These equations, together with the equation for the 
deviation 8 of the temperature from the static distribution [given by (7) of I] describe 
the problem of convection completely if the boundary conditions are specified. 
Assuming a Cartesian system of co-ordinates with the z co-ordinate in the direction 
of A, the position of the boundaries is given by z = rf: 4. We shall restrict attention 
to the case of rigid boundaries with prescribed constant temperatures. Accordingly, 
the conditions 

are required. 
For the investigation of the instabilities of convection rolls, the analysis proceeds 

in two steps. In the first step, two-dimensional steady solutions are obtained which 
correspond to the convection rolls observed in the experiments. In  the second step, 
infinitesimal disturbances of arbitrary three-dimensional form are superimposed 
on the steady solution. If a growing disturbance is found, the roll solution is unstable; 
if no growing disturbance exists, it is stable. In addition to the Rayleigh number R, 
the Prandtl number P = V / K  and the wavenumber a of the steady solution are para- 
meters of the problem. The necessity of considering arbitrary infinitesimal disturb- 
ances requires the introduction of two additional wavenumber parameters in the 
stability analysis. 

2.2. The steady problem 

Steady solutions of equations ( 5 )  and (7)  of I depending on y and z only are obtained by 
a Galerkin technique. 8 and 9 are expanded in terms of orthogonal functions which 
satisfy the boundary conditions on 9 and 8 :  

# = a z $ = $ = 8 = o  a t  z = + &  (2.1) 

Explicit expressions for g,(z) andf,,(z) are given in I. The summation runs through 
all integers 1 < v < N ,  - N + v  < A < N - v ,  where the truncation parameter N is 
chosen such that the solution changes by a negligible amount when hT is replaced by 
N + 2. Since we are interested in solutions describing periodic convection rolls, the 
analysis can be restricted to symmetric solutions with ah, = a-,, and b,, = b-Av. 
Another simplification results from the fact that only coefficients with even A+ v 
need be considered. The corresponding equations form a closed subset of the general 
system of equations. Solutions which are not described by this subset, for instance 
those with two rolls on top of each other, do not exist for Rayleigh numbers less than 
1.7 x lo4 and cannot be realized physically. For further details on the numerical 
analysis we refer to I. 

2.3. The stability problem 

For the investigation of the stability of the steady two-dimensional solution we 
superimpose infinitesimal disturbances {$, $, 6) of arbitrary three-dimensional spatial 
dependence. Since the equations for $, $ and 6 are linear, homogeneous and do not 
depend explicitly on x and t ,  an exponential dependence on those variables can be 
assumed. Because the equations are periodic in y, application of Floquet's theory 
shows that the y dependence of disturbances has the form of a periodic function with 
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the same period as the steady solution multiplied by a factor exp(idy). Thus the 
disturbances can be assumed to have the form 

(2.3) I 6 = [x dhveihg (z ) ]  ei(dU+bX)+ut, 

$- = [x E,,e~”Ufy(z)] ei(&+bx)+ct, 

8 = [x E,,,,eihau f,(z)] ei(dU+bz)+ct. 

bJ 

The variable $ has been expanded in the same system of functions f,(z) as 0 since 
both satisfy the same boundary conditions. Substitution of (2.3) leads to a system 
of linear homogeneous equations for the coefficients a“*,, Eh,, and EAv with r as the 
eigenvalue. Because the steady solution is represented by coefficients with even 
h + v the system of stability equations separates into two subsystems, one including 
only coefficients with even h+v, the other including only coefficients with odd 
A + v. Since preliminary computations seemed to indicate that the strongest growing 
disturbances correspond to d = 0 (in the case of finite b ) ,  d = 0 was assumed for most 
of the computations reported in I. In that case a further symmetry of the stability 
equations could be used. The revised program on which the present paper is based 
does not use the additional symmetry. 

The results reported in the following section are obtained by first selecting a steady 
solution characterized by the parameters R, P and a and computing the eigenvalues 
v for disturbances with even A+v and for those with odd h+v as functions of b 
and d. The eigenvalue r with the maximum real part r,. is then determined for several 
values of R chosen in such a way that they straddle the critical value a t  which u,. 
vanishes. A sufficiently accurate critical value can usually be obtained by inter- 
polation. By determining the critical Rayleigh numbers as a function of a, the 
stability boundaries shown in figures 1 and 2 are obtained. Because of the computa- 
tional expense, calculations of the stability boundaries as a function of the Prandtl 
number have been done for only two selected wavenumbers. 

3. Stability boundaries of convection rolls 

3.1. General discussion 
In  discussing the results of the stability analysis we consider first the subset of dis- 
turbances with odd h + v. The representative instability of this subset is the cross- 
roll instability, which is characterized by a finite value of b and vanishing d. This 
instability is present a t  all Prandtl numbers though its importance diminishes for 
Prandtl numbers of order unity or less. The name ‘cross-roll instability’ derives from 
the fact that disturbances in the form of rolls a t  right angles to the steady roll pattern 
grow monotonically. For Rayleigh numbers less than about five times the critical 
value, the instability occurs when the wavenumber of the steady rolls is either signi- 
ficantly larger or significantly lower than the critical wavenumber cxc and in the 
course of the instability the original rolls are finally replaced by another nearly two- 
dimensional roll pattern with a wavenumber close to the critical value. Accordingly 
the disturbances of maximum growth have a wavenumber b in the neighbourhood 
of the value 3.117 of ac. At higher Rayleigh numbers b becomes much larger as the 

. 
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instability assumes a boundary-layer character. I n  this case the two-dimensional rolls 
are replaced by the three-dimensional pattern of bimodal convection (Busse & 
Whitehead 1971). At Prandtl numbers of the order 10 or less, another branch of the 
cross-roll instability emerges. The growth rate u attains a second maximum a t  rela- 
tively low values of b, a possibility that had been overlooked in the previous compu- 
tations reported in I. Because of the knot-like appearance of the instability in the 
experimental observations, this particular branch of the cross-roll instability is 
called the knot instability. 

Among the instabilities belonging to the subset of disturbances with even h+v ,  
the oscillatory instability is the most important because it is responsible for the 
transition from steady rolls to a time-dependent form of convection. This instability 
has been investigated in detail in I. The corresponding stability boundary has been 
recomputed in the course of the present analysis because a more accurate eigenvalue 
routine became available for the new program. A comparison of figures 1 and 2 with 
the corresponding figures of I shows that the boundary for the onset of oscillations 
has changed little. 

Second in importance is the skewed varicose instability, which is characterized by 
a finite ratio of d l b .  Because of this unusual property and because, like the knot in- 
stability, it disappears in the limits of vanishing and infinite Prandtl numbers, where 
detailed investigations had been made earlier (Busse 1967, 1972), the skewed varicose 
instability was not included in the analysis of I .  Independently of the present analysis, 
the stability of convection rolls has been investigated by Moir (1976) in connexion 
with the development of a new numerical method. Moir did computations for isolated 
values of a, R and P and found an instability of the skewed varicose type. But the 
numerical method did not lend itself to extensive computations and the stability 
boundary was not determined for this reason. Wherever a comparison is possible, both 
numerical results are in agreement. 

The other instabilities among the disturbances with even h + v  are the zigzag 
instability, which is responsible for a small fraction of the boundary of the region of 
stable rolls, and the Eckhaus instability, which occurs only a t  low Prandtl numbers. 
Neither instability is responsible for any transition in the convection pattern as the 
Rayleigh number is increased. Since they have been discussed in I and since the new 
analysis has yielded a t  most some minor modifications of the corresponding stability 
boundaries, no further discussion is required. Instead attention will be focused on 
the two new instabilities. 

3.2. The knot instability 

The best impression of the knot instability is obtained from the shadowgraph obser- 
vations, see figures 8 and 10 (plates 2 and 4). The modification of the basic roll pattern 
produced by this instability is relatively small. The vertical velocity and the asso- 
ciated distortion of the isotherms are increased periodically along the up- and down- 
going fluid sheets on either side of a convection roll. The strong Prandtl number 
dependence suggests CL dynamic cause for the tendency towards the concentration of 
up- and down-going motion. The efficient heat transport in the stagnation-point 
layers a t  the boundaries generated by concentrated advection of momentum appears 
to be the main reason for the preference of this kind of motion. The experimental 
observations indicate that the knot-pattern convection becomes fully developed in 
the form of spoke-pattern convection a t  higher Rayleigh numbers. 
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FIGURE 1. Stability diagram for convection rolls for Prandtl number P = 7.0. Two-dimensional 
convection with a horizontal wavenumber ct is stable in the closed region (below the skewed 
varicose stability boundary). The numbers refer to the values of b .  The dashed curve indicates 
tho critical Rayleigh number for the onset of convection. 

The stability boundary generated by the knot instability is shown in the case of 
water in figure 1, and in the case of air in figure 2. The b values of the growing disturb- 
ances are given in the figures. On the right-hand side of the figures the knot instability 
merges smoothly with the ordinary cross-roll instability, while the two instabilities 
are clearly separated at  their crossover point in the upper part of figure 1. The critical 
Rayleigh number for the onset of the knot instability is shown as a function of the 
Prandtl number in figure 3 for two different wavenumbers a of the steady rolls. This 
graph demonstrates that low as well as high Prandtl numbers have a stabilizing effect. 
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FIGURE 2. Stability diagram for convection rolls in an air layer ( P  = 0.71). Two-dimensional 
convection with a horizontal wavenumber a is stable in the shaded region. The numbers refer 
to the values of b. The dashed curve indicates the critical Rayleigh number for the onset of 
convection. 
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FIGURE 3. Stability boundaries of convection rolls with wavenumbers a = 3.117 (solid) and 
a = 2.2 (dashed) as a function of Rayleigh number R and Prandtl number P. Stability bound- 
aries for intermediate wavenumbers lie in the shaded areas. 
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3.3. The skewed varicose instability 

The skewed varicose instability corresponds to a periodic thickening and thinning of 
the convection rolls, the phase depending linearly on the x co-ordinate. This latter 
property causes the characteristic skewed appearance of the disturbed roll pattern. 
The horizontal dependence of they velocity of the disturbed convection roll is approxi- 
mately given by 

vy cc sinay +a cos [(a+ d )  y + bx] +a‘ cos [(a - d )  y- bx] + . . . . (3.1) 

The disturbance amplitudes e and E’ become equal in the limit of vanishing d. By 
multiplying the actual solution of the stability equations by a finite factor and adding 
it to the steady two-dimensional solution, an approximate description of the dis- 
torted roll pattern can be obtained. This method has been used to obtain the picture 
of the vertically averaged temperature distribution shown in figure 4. The factor 
used in that figure corresponds to the choice (e2+e’2)4 = in the truncated series (3.1). 
The distorted boundaries of the rolls corresponding to the lines of vanishing vy are 
indicated by the thick lines. Because of the symmetry of the problem with respect to 
the x direction the two signs of the skewness are equally possible. Mathematically 
this corresponds to a change in the sign of b. From the general representation (2.3) 
of the disturbances it is evident that the stability problem does not change when d 
is replaced by na + d,  where n is an arbitrary integer. Within the class of disturbances 
with even h + v, n must be an even integer in order that the same stability result is 
obtained. Since we are considering the skewed varicose instability within the frame- 
work of disturbances with even A + V ,  we may restrict the discussion to the range 
O < d < a .  

The critical Rayleigh number R, for the onset of the skewed varicose instability 
corresponds to disturbances for which both b and d tend to zero, such that the ratio 
d/b  remains approximately constant at  a value close to 1.4. Thus the skewed varicose 
instability can be considered as a modification of the neutral disturbance 

which is always an exact solution of the stability equations with v = 0 and which 
represents a small translation of the steady roll pattern. The skewed varicose in- 
stability shares this property with the zigzag instability and with the oscillatory 
instability in the case of stress-free boundaries (Busse 1972). As in the case of those 
instabilities, the growth rate of the critical disturbance remains infinitesimal even 
when the Rayleigh number exceeds the critical value RS*. Only disturbances with 
finite values of b and d possess finite growth rates. In figure 5 the growth rate B is 
shown as a function of d for various Rayleigh numbers. In the actual physical situa- 
tion, the strongest growing disturbance at  a given Rayleigh number is most likely to 
be realized. For this reason the observed values of b and d may vary considerably as 
a function of R. In the case of figure 5, d appears to approach an asymptotic value in 
the neighbourhood of 1.2. The corresponding value of b is 0.85. The ratio b/d for the 
strongest growing disturbance changes relatively little as a function of Rayleigh 
number and Prandtl number, but increases slightly with a from 0.6 a t  a = 2.2 to 
0.9 a t  a = 4.6. 

In  figure 6 the maximum growth rates B for the skewed varicose and the knot 
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FIGURE 4. Pattern of convection rolls which are distorted by the skewed varicose instability. 
The thick solid (dashed) lines mark the cell boundary corresponding to hot rising (cold descend- 
ing) fluid. The thin solid (dashed) lines indicate isotherms of the vertically averaged tem- 
perature distribution. The parameters used for the computations are R = lo4, P = 7, a = 3.5, 
b = +a, d = $a. 

instability are shown as a function of R for the case a = 3.117, P = 7. The figure 
demonstrates that the growth rate of the skewed varicose instability increases only 
quadratically, u oc ( R  - R8J2, as the Rayleigh number exceeds the critical value R,. 
The fact that the growth rates of the two instabilities are comparable a t  higher Ray- 
leigh numbers is partly responsible for the difficulty of separating them experi- 
mentally as is discussed in more detail in 3 5 .  

From figure 4 it is evident that the skewed varicose instability tends to shear and 
pinch off rolls in such a way that the remaining segments exhibit a larger character- 
istic wavelength. Indeed, the tendency of the instability mechanism to eIiminate large 
wavenumber rolls in favour of small wavenumber rolls is evident from figures 1 and 
2, which show that R, increases strongly with decreasing a, with a resultant shift 
of the region of stable rolls towards smaller wavenumbers. This property is also borne 
out in figure 3, where the values of R,, for a = 2.2 and a = 3-117 are compared. It 
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thus appears that the skewed varicose instability plays a major role in the generally 
observed increase of the average wavelength of convection rolls when the Rayleigh 
number is increased. 

4. The experimental method 
The experimental apparatus and technique are the same as those described in the 

papers by Busse & Whitehead (1971, 1974) and only a brief description will be given 
here. The convection layer consists of a clear liquid sandwiched between two hori- 
zontal plate-glass boundaries. Glass plates are also fixed above and below the con- 
vection layer in order to create channels through which water of given temperature 
flows. Because of the finite conductivity of the plate glass, this arrangement fails to 
provide accurately the condition of a fixed temperature at the boundary of the 
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FIGTJRE 6. The growth rate CT of the skewed varicose instability (dashed curve) and for 
the knot instability (solid curve) 88 function of R for a = 3.117 and P = 7-0. 

convection fluid assumed in the theory. But the use of lucid material has the over- 
riding advantage that the shadowgraph visualization method can be used. The effect 
of the finitely conducting boundaries is quite noticeable in the experimental results, 
but it does not seem to influence the qualitative features predicted by theory. Because 
of the temperature dependence of the refractive index in liquids, hot ascending and 
cold descending sheets of liquid become visible on a screen in the form of dark and 
bright lines when a beam of nearly parallel light transverses the layer. 

Most convection experiments described in the literature have been done without 
controlled initial conditions. Accordingly, a rather random pattern of roll-like con- 
vection cells is realized when the critical temperature difference is exceeded unless the 
aspect ratio of the experiment is sufficiently low that the influence of the side walls 
becomes noticeable in the formation of the pattern. Although there is a tendency 
towards the development of a more regular roll pattern, tHis process is hardly ever 
completed because it is governed by the thermal diffusion time scale based on the 
horizontal dimension of the convection layer and because it is influenced by very 
small lateral inhomogeneities. For this reason, controlled initial conditions must be 
employed to obtain a regular pattern of steady convection rolls. Controlled initial 
conditions have the additional advantage that the wavenumber a of the rolls can be 
chosen freely within certain limits. 

As in the previous experiments with the apparatus, controlled initial conditions 
were achieved by placing a grid with the desired wavelength on top of the upper 
water channel and using a heat lamp to transmit radiative energy through the grid 
into the convection layer. Although the amount of radiation absorbed by the liquid 
in the convection layer is small, the resulting spatially periodic temperature rise is 
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sufficiently large ( NN 0.05 OK) to dominate over random temperature fluctuations. 
Except for the somewhat larger amplitude, the effect of the controlled temperature 
variations on the convection realized does not differ from the effect of the random 
temperature fluctuations present naturally. The experiment is started by raising the 
temperature difference between water channels from the nearly isothermal state by 
proper adjustment of the thermostatic baths and by switching off the heating lamp. 
The inducement of a regular pattern of rolls of the desired wavelength requires a 
sufficiently slow rise of the Rayleigh number. An interval of 3-5 thermal diffusion 
times h2/K was usually sufficient to achieve a nearly steady state for values of R of 
the order of lo4. Since the corresponding temperature difference T2 - TI is of the 
order of 1 OK, in the absence of convection the initially induced temperature varia- 
tions would have decayed to less than 1% of the temperature variations caused by 
convection by the time the steady state was approached and the shadowgraph obser- 
vations were started. 

The steady two-dimensional solution for convection in an infinite layer can only be 
approximated in a laboratory experiment. Near the side walls the convection flow 
becomes three-dimensional in general and unsteady processes cause destruction of 
the initially induced two-dimensional pattern. As time proceeds the disturbances 
propagate from the side walls towards the interior of the layer and ultimately disrupt 
the original two-dimensional pattern. The horizontal propagation of the disturbances 
is basically governed by the velocity of thermal diffusion K / h ,  but it can be signifi- 
cantly faster when the convection pattern is unstable. Because of the large aspech 
ratio there is usually sufficient time to observe the onset of the instability of the 
uniform roll pattern. In  contrast to the finite amplitude inhomogeneities caused by 
side-wall effects, the instabilities of the uniform pattern start from nearly infinitesimal 
disturbances and are characterized by a rather uniform wavenumber b .  They appear 
to share all properties of the eigensolutions of the linear stability problem with the 
exception of the uniform extent over an infinite layer. Because the small disturbances 
from which the instabilities start are out of phase over distances of the order of lOh, 
dislocations similar to those found in crystal lattices are typical. It has never been 
difficult, however, to distinguish clearly the nearly uniform small amplitude dis- 
turbances from the inhomogeneities propagating in from the side walls. In  cases when 
the nearly uniform instability did not develop within a period of about 10 thermal 
time scales h 2 / K  the roll pattern was considered as stable with respect to small ampli- 
tude disturbances. 

The depth h of the convection layer was either 0.55 or 0-84 cm for most experiments. 
Methyl alcohol and water at different mean temperatures were used as convection 
fluids. The properties are given in table 1. In  order to avoid thermosolutal effects 
caused apparently by the hygroscopic property of methyl alcohol, this liquid was 
exchanged frequently. Since the mean temperature difference AT between the 
boundaries of the convecting fluid is not measured, it must be inferred from the 
temperature difference AT, measured between the water channels above and below 
the convection layer. The formula used for this purpose is 

where kD and dg are the thermal conductivity and thickness of the plate-glass bound- 
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Methyl alcohol Water Water 

Kinematic viscosity (10-8 cmS/s) 0.710 0.916 0.862 
Thermal conductivity [ cal/(cm s OK)] 0.4767 1.444 1.528 
Thermal diffusivity ( cma/s) 1.00 1.446 1.521 
Coefficient of expansion ( "K-I) 1-24 0.246 0.455 
Prandtl number, P 7-1 6.3 3.7 

TABLE 1. Properties of convection fluids. 

(23 "C) (24 "C) (60 "C) 

aries, and k is the conductivity of the convecting liquid. As in the previous experi- 
ments by Busse & Whitehead (1974), the expression Nu = 0.19Roasz was used for 
the Nusselt number; this appears to give a fair approximation for the experimentally 
realized value a t  Rayleigh numbers above 104. Since the wavelength dependence of N u  
was not taken into account and because of the uncertainties in the material properties, 
the absolute values of the Rayleigh numbers used in the experimental results may be 
in error by as much as 5-1G%. The relative accuracy is significantly higher, however. 

5. Experimental results 
The interpretation of the experimental observations in terms of the instability 

mechanism discussed in the theoretical part of this paper is complicated for a number 
of reasons. First, the critical values of the Rayleigh number for the onset of the knot 
and the skewed varicose instability are relatively close for Prandtl numbers larger 
than 3. There is hardly any suitable liquid available with a smaller Prandtl number, 
and the experimental technique is not feasible in the case of gases. Second, although 
the two instability mechanisms are quite distinct from the theoretical point of view, 
it is not very easy to distinguish them in the shadowgraph observations. The wave- 
number b of the strongest growing skewed varicose disturbance is comparable to the 
expected wavenumber of the knot instability according to figures 1 and 5. Third, the 
growth rate of the skewed varicose instability is relatively low in the neighbourhood 
of the critical Rayleigh number R,. Accordingly, the Rayleigh number must be raised 
appreciably beyond the critical value in order that the growth of the instability 
becomes visible within an interval of about 10 thermal time scales P/K, which is usually 
available before irregular disturbances propagate in from the side walls and destroy 
the regular pattern. In  addition, nonlinear interactions seem to exist by which a finite 
amplitude skewed varicose disturbance triggers the knot instability and vice versa. 

It is understandable that the two instabilities have not been distinguished in earlier 
observations before the theoretical interpretations were available. Actually, neither 
instability has been clearly observed in the previous observations with the same 
apparatus at similar Prandtl numbers, Although the patchy process of a varicose- 
type destruction of the roll pattern reported by Whitehead & Chan (1976) is obviously 
connected with the skewed varicose instability, it lacked the homogeneity of an 
instability growing from infinitesimal disturbances. Because of the high conductivity 
of water and the low heating power of thermostats, a smaller version of the present 
apparatus was used in the experiments with hot water as the convection fluid de; 
scribed by Whitehead & Chan (1976). The installation of an additional heating element 
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and the use of methyl alcohol instead of water in the present experiments have 
resolved this problem and the larger aspect ratio of the present convection layer has 
provided a more homogeneous condition for the instabilities. 

A good example of the occurrence of the skewed varicose instability is shown in 
figure 7 (plate 1). The instability starts with a small wavy distortion (figure 7b) of 
the originally uniform roll pattern (figure 7a).  As the disturbance grows (figure 7c), 
it tends to pinch the rolls (figure 7d) and to form cells in the form of short rolls with 
nearly twice the wavelength of the original rolls (figure 7e).  At the time of figure 7 (f ), 
the establishment of rolls with larger wavelength than the original ones is clearly 
evident even though the pattern continues to change in time a t  a slower rate. Thus the 
skewed varicose instability does not correspond to a transition to a qualitatively 
new kind of convection pattern, but instead transforms the roll pattern into another 
one with a stable wavenumber. The increase of the characteristic wavelength of 
convection caused by the skewed varicose instability is even more pronounced a t  
lower Prandtl numbers, as the stability graph for air shown in figure 2 indicates. This 
agrees with the general experimental observation (Willis, Deardorff & Somerville 
1972) that the characteristic wavelength at  finite amplitude of convection increases 
with decreasing Prandtl number even though a, is independent of the Prandtl number. 
The observation made by Busse & Whitehead (1971) that larger rolls always grow at 
the expense of smaller rolls when both are joined by a pinch is also in accordance with 
this property of the skewed varicose instability. 

In  contrast to the skewed varicose instability, the knot instability leads to a new 
form of convection, namely spoke-pattern convection. The knot instability is essen- 
tially identical to the collective instability which produces the transition from bimodal 
or oscillatory bimodal convection to spoke-pattern convection, and which was 
described in detail by Busse & Whitehead (1974). Figure 8 (plate 2 )  shows that the 
transition to bimodal convection owing to the cross-roll instability, corresponding to 
the high b wavenumber disturbances in the photographs and the transition to spoke- 
pattern convection owing to the knot instability, corresponding to the low b wave- 
number disturbances, may take place almost at the same time. This phenomenon is 
even more pronounced in figure 9 (plate 3), where the transition to bimodal convection 
appears to occur initially. The cross-roll instability, producing bimodal convection, 
has usually larger growth rates, but it is always ultimately superseded by the knot 
instability in the region where both may occur. On the other hand, the regular spoke 
pattern figures (8f and 9d) resulting from the knot instability remains stable only 
when the wavelength of the basic rolls is rather large. Otherwise the skewed varicose 
instability modifies the spoke pattern. Thus the experimental observations indicate 
that the various instabilities of two-dimensional convection rolls continue to operate 
in those regions where the rolls have already been replaced by a three-dimensional 
form of convection. At relatively large values of a, the knot instability does not differ 
much from the ordinary cross-roll instability, which limits the stability region of 
rolls towards high wavenumbers a. Figure 10 (plate 4) shows this close relationship, 
which must be expected on theoretical grounds since the knot instability represents 
a particular branch o f  the cross-roll instability, Some influence of the skewed varicose 
instability mechanism is also noticeable in figure 10 (c), with the typical consequence 
of large wavelength rolls visible in figure 10 (d). 

A quantitative display of the observational data is given in figure 11. Only the 
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FIUURE 1 1 .  Experimental observations of instabilities of convection rolls in methyl alcohol in 
comparison with the critical stability boundaries (see figure 1). + , cross-roll instability; + , 
knot instability; x , skewed varicose instability; *, cases where it is not possible to distinguish 
the dominant instability between the latter two. The numbers refer to the observed wave- 
number b . 

observations for methyl alcohol are shown since this liquid approximates better than 
water the theoretical assumption of an infinite ratio between the conductivities of 
the boundary and the convecting fluid. The finite conductivity of the methyl alcohol 
is evidently responsible for the shift of the experimentally observed stability boundaries 
towards lower wavenumbers and lower Rayleigh numbers as must be expected be- 
cause of the less constraining boundary condition for the temperature. The observed 
wavenumber b of the instability also exhibits this effect, which was found earlier in 
the case of higher Prandtl numbers (Busse & Whitehead 1971). In  the present in- 
vestigation, attention has been focused on the upper part of the stability diagram for 
rolls because of the new instabilities occurring in this regime. The cross-roll instability 
and the zigzag instability, which dominate in the lower part of the theoretical stability 
chart of figure 1, have been investigated in the earlier experiments by Busse & White- 
head (1971) and Whitehead & Chan (1976). 

The experimental observations with water agree qualitatively with those in the 
case of methyl alcohol. Because of the higher conductivity of water, the observed 
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stability boundary is shifted even more towards lower wavenumbers than is shown 
in figure 11. Because of the lower Prandtl number of hot water, the knot and the 
skewed varicose instabilities occur at  lower Rayleigh numbers, in agreement with the 
theory. 

6.  Discussion 
The finite amplitude properties of thermal convection are governed by two non- 

linear terms .in the basic Boussinesq equations. These terms describe the advection 
of momentum and of heat. The Prandtl number provides a measure of the relative 
importance of these terms in the sense that the advection of momentum becomes 
dominant for small values of P, but vanishes in the limit P -+ a. The original expecta- 
tion was that the stability properties of convection at  a finite Prandtl number could 
be understood in terms of the mechanisms of instability present in the limiting cases 
of small and large Prandtl number. The results of this paper describe a more compli- 
cated picture since both the knot instability and the skewed varicose instability 
disappear for large as well as small Prandtl numbers. 

Although the Prandtl number dependence provides important clues in the under- 
standing of instability mechanisms in general, it  does not provide much insight in the 
case of the knot and skewed varicose instabilities. These instabilities obviously 
depend on an interaction of the advection of momentum and of heat, but the details 
of this interaction are not easily accessible in the numerical approach used in this 
paper. Since the stability boundary of the skewed varicose instability approaches the 
cume R,(a) which describes the Rayleigh number for the onset of convection of a given 
wavenumber a, an analytical theory based on a small amplitude perturbation theory 
should be possible. But this has not yet been attempted. 

Since it is impossible to obtain computational results for all possible values of the 
parameters of the stability theory, the possibility of an instability corresponding to 
a steep rise of the growth rate in a narrow region of the parameter space cannot easily 
be dismissed. Although no indication of such a behaviour has ever been found, the 
confirmation of the theoretical results by the experimental observations is reassuring. 
The fact that all transitions predicted by the linear stability theory can actually be 
observed is unusual since subcritical finite amplitude instabilities occur in many 
hydrodynamic systems. Within the experimental accuracy, this phenomenon can 
be excluded for the cases investigated in this paper. 

Besides confirming the theoretical results in all qualitative aspects, the experi- 
mental observations provide important information beyond the scope of the stability 
theory. The instabilities predicted for the roll solution appear to occur with little 
modification even after the convection rolls have already experienced a transition 
to a three-dimensional pattern. The mechanisms of higher transitions can thus be 
understood in terms of the instabilities of two-dimensional rolls. The explanation of 
the collective instability of bimodal convection (Busse & Whitehead 1974) in terms 
of the knot instability is a typical example. Indeed, there appears to be no observed 
instability in the Rayleigh number range up to a few times lo5 which is not related 
to one of the known instabilities of two-dimensional rolls. It must be said, though, 
that it becomes increasingly difficult at  high Rayleigh numbers to generate regular 
three-dimensional patterns of convection and to observe their instabilities. In  parti- 
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cular, more careful observations of spoke-pattern convection are needed to learn 
about further instability mechanisms involved in the development towards fully 
turbuIent convection. 
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FIGURE 7 .  The onset of tho skewed varicose instability in water with a mean temperature of 
50 ‘C, h = 5.5 mm arid CL = 1.38. The Rayleigh number R increases slightly from lo4 to 1 . 1  x lo4. 
The time intervals between subsequent pictnres are 4, 5 ,  3, 4 and 8 min, respectively. 

(Fucing p .  336) 
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FIGURE 8. Tlie onset of the knot instability in methyl alcohol with h = 8.4 mm, cc = 1.74. R 
increases slightly from 4.5 x lo4 to 5.5 x lo4. The time intervals betwoell subseqrtont pictures 
are 6, 2 ,  3, 2 and 6 min, respectively. 
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( 6 )  (d )  

FIGURE 9. The joint onsct of the cross-roll and the knot instabilities in iiicthyl alcohol with 
h = 5.5 mm, a: = 1.2. R increases from 2.8 x lo4 to 3.6 x lo4 and the time intervals betwcen 
subsequent pictures are 2, 1 and 11 min, respectively. 
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(0 ) ( d )  

FIGURE 10. The onsst of the knot instability in water with a mean temperature of 24 "C, 
h = 5.5 mm, and a = 2.05. R increases slightly from lo4 t o  1 . 1  x lo4. The time intorval between 
subsequent pictures is 2 min. 


